

Course Information Sheet

CSCI 1302
Software Development

Brief Course Description

(50-words or less)

Software development techniques in an object-oriented computer language.

An intermediate programming course in Java emphasizing systems methods,

top-down design, testing, modularity, and structured techniques.

Applications from areas of numeric and non-numeric processing and data

structures.

Extended Course Description

/ Comments

This course is the 2nd in a 2-part series of courses introducing students to the

Java programming language. This course includes group work and/or pair

programming.

Pre-Requisites and/or Co-

Requisites

Prerequisite: CSCI 1301

Required, Elective or Selected

Elective

Required Course

Approved Textbook

The following open educational resources are available for this

course:

Michael E. Cotterell and Bradley J. Barnes. CSCI 1302 Class Exercises.

GitHub and Zenodo, Department of Computer Science, 415 Boyd

GSRC, University of Georgia, Athens, GA, 2019sp edition, April 2019.

DOI: 10.5281/zenodo.2652510.

The following textbook may be used in addition to or instead of the

open educational resources above:

Author: John Lewis, Peter DePasquale, Joseph Chase

Title: Java Foundations: Introduction to Program Design & Data

Structures

Edition: 4th Edition

ISBN-13: 978-0983507901

Specific Learning Outcomes

(Performance Indicators)

1. Plan, design, implement, compile and execute a complete object-

oriented software solution on a target Unix environment.

2. Describe and apply fundamental programming techniques, including

exception handling, generics, recursion, and code reuse.

3. Apply accepted programming practices, including documentation and

proper code style.

4. Describe and apply object-oriented programming techniques,

including interfaces, inheritance, and polymorphism, and apply

combinations of each in a software solution.

5. Utilize software development tools, including tools for version

control, build management, debugging, and unit testing.

6. Design, analyze, and implement algorithms for searching, sorting, and

other real-world problems.

7. Reinforce course concepts using integrative examples, including

graphical user interfaces, stream-like operations, and abstract data

types.

ABET Learning Outcomes A. Graduates of the program will have an ability to: Analyze a complex

computing problem and to apply principles of computing and other

relevant disciplines to identify solutions.

B. Design, implement, and evaluate a computing-based solution to meet

a given set of computing requirements in the context of the program’s

discipline.

C. Communicate effectively in a variety of professional contexts.

D. Recognize professional responsibilities and make informed judgments

in computing practice based on legal and ethical principles.

E. Function effectively as a member or leader of a team engaged in

activities appropriate to the program’s discipline.

F. Apply computer science theory and software development

fundamentals to produce computing-based solutions.

NOTE: In the construction of the student learning outcomes for this

course, the instructors interpreted “computing requirements” in (B) as the

functional requirements for a software solution and not as specific

hardware requirements for the target platform; likewise, the phrase

“[a]pply computer science theory” in (F) was interpreted as using

computer science principles.

Relationship Between

Student Outcomes and

Learning Outcomes

 ABET Learning Outcomes

Specific

Learning

Outcomes

 A B C D E F

1 ⚫ ⚫ ⚫

2 ⚫ ⚫ ⚫

3 ⚫ ⚫ ⚫

4 ⚫ ⚫ ⚫

5 ⚫

6 ⚫ ⚫ ⚫

7 ⚫ ⚫ ⚫

Major Topics Covered

1. Unix Fundamentals (Knowledge level: Usage)

a) Navigate and modify files, directories, and permissions in a multi-

user Unix-like environment.

b) Execute, redirect, pipe, and manage programs/processes in a multi-

user Unix-like environment.

c) Create and modify text files and source code using a powerful

terminal-based text editor such as Emacs or Vi. NOTE: Extremely

simple programs like nano, pico, etc. are not sufficient.

d) Use shell commands to compile new and existing software solutions

 that are organized into multi-level packages and have external

dependencies.

2. Programming Fundamentals (Knowledge level: Usage)

a) Identify redundancy in a set of classes and interfaces, then refactor

using inheritance and polymorphism to emphasize code reuse.

b) Define, throw, and propagate exceptions appropriately in a software

solution.

c) Use recursion to solve a non-trivial problem in a software solution.

d) Implement new generic methods, interfaces, and classes in a

software solution.

e) Utilize existing generic methods, interfaces, and classes in a

software solution.

Accepted Programming Practices (Knowledge level: Usage)

a) Create and update source code that adheres to established style

guidelines.

b) Create class, interface, method, and inline documentation that

satisfies a set of requirements.

c) Generate user-facing API documentation for a software solution.

d) Apply pair-programming principles in a software-based project.

Object-Oriented Programming (Knowledge level: Usage)

a) Design, create and use interfaces in a software solution.

b) Utilize interface-based polymorphism in a software solution.

c) Design, create and use inheritance relationships in a software

solution.

d) Utilize inheritance-based polymorphism in a software solution.

e) Use visibility modifiers to provide inheritance-based and package-

based access protection in a software solution.

Software Development Tools (Knowledge level: Usage)

a) Utilize a version control tool such as Git or Subversion to store and

update source code in a multi-programmer software solution.

b) Utilize a build tool such as Maven or Ant to create and manage a

complex software solution involving external dependencies.

c) Utilize a debugger to trace and identify logical errors in a software

solution.

d) Create unit tests for classes, interfaces, and methods using a unit

testing framework like JUnit.

Analysis (Knowledge level: varies by topic)

a) Given an algorithm, perform an analysis that classifies the algorithm

according to its best Big-O class for a given unit of measurement

(e.g., comparisons vs. swaps). (Usage)

b) Design an algorithm that solves a given problem with a particular

Big-O class given as a constraint. (Assessment)

c) Implement, analyze, and assess combinations of searching/sorting

algorithms such as linear search, binary search, quadratic sorts, and

linearithmic sorts. (Assessment)

Integrated Examples

a) Design and implement a graphical user interface in a software

project. (Usage)

b) Use stream-like operations (e.g., map, reduce, and filter in the Java

Stream API) as an alternative to iteration in solving problems.

Observe the difference between resulting implementations. (Usage)

c) Use common abstract data types and structures, including lists,

queues, arrays, and stacks in solving typical problems. (Usage)

Knowledge Levels The following is the ACM’s categorization of different levels of mastery:

Assessment, Usage, and Familiarity. Note that Assessment encompasses

both Usage and Familiarity, and Usage encompasses Familiarity.

Familiarity: The student understands what a concept is or what it means.

This level of mastery concerns a basic awareness of a concept as opposed to

expecting real facility with its application. It provides an answer to the

question “What do you know about this?”

Usage: The student is able to use or apply a concept in a concrete way.

Using a concept may include, for example, appropriately using a specific

concept in a program, using a particular proof technique, or performing a

particular analysis. It provides an answer to the question “What do you

know how to do?”

Assessment: The student is able to consider a concept from multiple

viewpoints and/or justify the selection of a particular approach to solve a

problem. This level of mastery implies more than using a concept; it

involves the ability to select an appropriate approach from understood

alternatives. It provides an answer to the question “Why would you do

that?”

Modified 6/14/2019 by Dr. Cotterell and Dr. Barnes

Approved Yes

