Graph Theory

Brief Course Description (50-words or less)
 Extended Course Description / Comments

Elementary theory of graphs and digraphs. Topics include connectivity, reconstruction, trees, Euler's problem, hamiltonicity, network flows, planarity, node and edge colorings, tournaments, matchings, and extremal graphs. A number of algorithms and applications are included.

This course is cross-listed with MATH 4690 . This is a 3 credit hour course.

MATH 3000 or MATH 3500 or MATH $3500 H$ AND
CSCI 2610 or MATH 3200
Selected Elective Course

Author(s): Geir Agnarsson and Raymond Greenlaw
Title: Graph Theory: Modeling, Applications, and Algorithms
Edition: any
ISBN-13: 9780131423848

This course is an introduction to graph theory. At the end of the semester, all students will be able to do the following:

1. Tell if two given graphs of small size are isomorphic.
2. Prove the equivalence of several definitions of tree.
3. Convert a Prufer sequence to a labeled tree.
4. State an algorithm for testing connectivity of a given graph
5. Determine the number of labeling of a given unlabeled graph.
6. Use the matrix tree theorem to determine the number of spanning trees in a given graph.
7. Decide if a given graph can be properly 3-colored, or 4-colored.
8. Give the adjacency information for the line graph of a given graph.
9. Determine the 2-connected components of a given connected graph
10. Use either Prim's or Kruskal's algorithm for determining the minimum cost spanning tree of a given edge-weighted graph
11. State three real-world processes model by a graph

Relationship Between Student Outcomes and Learning Outcomes

	ABET Learning Outcomes						
		A	B	C	D	E	F
	1	-		-			
	2	-					
	3	\bullet		-			
ABET	4	-		-			
Specific	5	-					
Outcomes	6	-	-				
	7	-	-				
	8	-	-				
	9	-	-	\bullet			
	10	-	-				
	11	-	-				

Major Topics Covered

(Approximate Course Hours)
3 credit hours $=37.5$ contact
hours
4 credit hours $=50$ contact hours
Note: Exams count as a major topic covered

Propositional logic (3.5-hours)
Predicate logic (3.5-hours) Proofs:
types of proofs (4-hours)
Sets, set logic and set operations (2-hours)
Functions (2-hours)
Sequences and summations (2-hours)
Integer algorithms (3-hours) Modular
arithmetic (.5-hours) Mathematical
induction (3.5-hours) Counting (2.5hours)
The pigeonhole principle (.5-hours) Permutations and combinations (2.5-hours) Finite probabilities
(4-hours)
Relations (2.5-hours)
Using graphs to represent relations (1.5-hours)

Course Master Dr. Bill Hollingsworth
Last modified on 3/18/2024 by Bill Hollingswoth

